Software and Systems Modeling
httpsy//doi.org/10.1007/510270-020-00823-4

{
g

Consistent change propagation within models

Roland Kretschmer' - Djamel Eddine Khelladi? - Roberto Erick Lopez-Herrejon® - Alexander Egyed’

Received: 27 June 2019 / Revised: 20 April 2020 / Accepted: 6 July 2020
© The Author(s) 2020

Abstract

Developers change models with clear intentions—e.g., for refactoring, defects removal, or evolution. However, in doing so,
developers are often unaware of the consequences of their changes. Changes to one part of a model may affect other parts
of the same model and/or even other models, possibly created and maintained by other developers. The consequences are
incomplete changes and with it inconsistencies within or across models. Extensive works exist on detecting and repairing
inconsistencies. However, the literature tends to focus on inconsistencies as errors in need of repairs rather than on incomplete
changes in need of further propagation. Many changes are non-trivial and require a series of coordinated model changes. As
developers start changing the model, intermittent inconsistencies arise with other parts of the model that developers have not
yet changed. These inconsistencies are cues for incomplete change propagation. Resolving these inconsistencies should be
done in a manner that is consistent with the original changes. We speak of consistent change propagation. This paper leverages
classical inconsistency repair mechanisms to explore the vast search space of change propagation. Our approach not only
suggests changes to repair a given inconsistency but also changes to repair inconsistencies caused by the aforementioned repair.
In doing so, our approach follows the developer’s intent where subsequent changes may not contradict or backtrack earlier
changes. We argue that consistent change propagation is essential for effective model-driven engineering. Our approach and
its tool implementation were empirically assessed on 18 case studies from industry, academia, and GitHub to demonstrate its
feasibility and scalability. A comparison with two versioned models shows that our approach identifies actual repair sequences
that developers had chosen. Furthermore, an experiment involving 22 participants shows that our change propagation approach
meets the work flow of how developers handle changes by always computing the sequence of repairs resulting from the change
propagation.

Keywords Model-driven engineering - Inconsistency repair - Change propagation - Consistency detection

1 Introduction

The benefits of model-driven engineering (MDE) hinge on
the assumption that models remain consistent. This is obvi-
ously a problem during evolution when changes happen.
Avoiding or repairing inconsistencies is important, because
inconsistencies often cause subsequent errors if develop-
ers do not recognize them in a timely manner. Moreover,
if models are inconsistent, all automation around them is
untrustworthy and likely causes further errors. Therefore,
inconsistencies must not only be detected but ultimately be

Communicated by Richard Freeman Paige.

B2 Roland Kretschmer
roland kretschmer@jku.at

Djamel Eddine Khelladi
djamel-eddine khelladi @irisa.fr

Roberto Erick Lopez-Herrejon
roberto.lopez@ etsmtl.ca

Alexander Egyed

alexander.cgyed @ jku.at

Institute for Software Systems Engincering, Johannes Kepler
University, Linz, Austria

CNRS, Univ. Rennes 1, Rennes, France

D’epartement de g'enic logiciel et des TI, "ETS - University
of Quebec, Quebec, Canada

Published online: 25 August 2020

repaired [5,9.51].

Not surprisingly, inconsistency detection and repair has
received considerable attention from the scientific commu-
nity [14.32.42.49].

However, not only wrong but also incomplete model
changes may cause inconsistencies. That is, a change in a
part of the model that was not carried through to other parts

@ Springer

R. Kretschmeretal.

of the model causes inconsistencies. Those inconsistencies
are cues for missing changes and not for (earlier) erroneous
changes. This paper focuses on these incomplete changes. We
discuss how to use inconsistencies as guides for completing
changes (i.e., for consistent change propagation) by (1) sug-
gesting changes to (not yet modified) parts of the model that
repair the given inconsistencies, (2) systematically explor-
ing further changes that repair inconsistencies caused by the
changesin (1), and (3) by ensuring that the resulting sequence
of changes is faithful to the initial, incomplete changes the
developer made (which convey the developers’ intention).
We speak of consistent change propagation.

As an example, imagine that a message is passed among
two components and the name of this message is inconsis-
tent, because there is no declaration with such a name. One
possible repair of this inconsistency is to change the message
name. As such, the message name could be changed to the
name of any declaration. However, another possible repair
is to change the name of one of the declarations. Both are
valid repairs but which repair is in fact the desired one? This
depends on the developer’s intent. In fact, by considering
the original developer’s change that caused the message to
become inconsistent, we could infer the intent. For example,
if the developer initially renamed the message which caused
the inconsistency, then the likely intent was to rename the
declaration or add a new declaration. It would be contradic-
tory to the developer’s intent to rename the message once
again, even though doing so would be a valid repair.

The basic idea governing consistent change propagation
is to treat earlier developer changes as correct modifications
of the model. The inconsistencies caused by these changes
should then be repaired such that they do not contradict the
developer and/or earlier repairs. Consistent change propaga-
tion cannot be solved adequately if one merely investigates
one change at a time without also considering subsequent
changes therefore.

This paper introduces a method and corresponding imple-
mentation that explores the propagation of initial developer
changes by systematically trying alternatives for repairing
arising inconsistencies. This is done by computing a model
state tree for each developer change, where every model state
represents the application of exactly one repair. This allows
us to track every effect the repair has on the model and provide
guidance on how a developer can propagate the performed
change through affected parts of the model. The result is not
a single repair but rather alternative sequences of changes.

We evaluated the performance and usability of our
approach on 18 case studies consisting of inconsistent mod-
els. Two of those models were taken from GitHub. Among the
176 changes, we were able to reach a consistent model] state
within five repairs on average for every developer change.
We further conducted an experiment with 22 students. The
experiment helped us to further assess the usefulness of our

@ Springer

consistent change propagation approach, by investigating
whether our approach can reproduce the repair sequences
the students have applied to the model. We were able to com-
pute all repair sequences the students applied to the models
to propagate changes. On average our approach is able to
provide all model state trees and repair plans within 3 s over
all used models. In cases where models have hundreds of
possible repairs to propagate changes, we sorted them by the
number of necessary repair steps from shortest to longest
repair sequences, i.e., "fewer is better" is often considered a
desirable sorting strategy.

2 Running example

To illustrate our approach, we use a video on demand (VOD)
system which is based on a client-server architecture taken
from Egyed [6]. Figure 1 depicts example snippets of three
different UML diagram types of this system: a class diagram,
a sequence diagram, and a state machine diagram.

In the class diagram in Fig. la, class User initiates the
process of playing or stopping a stream by calling operation
playOrStoponclass Streamer. Class Streamer han-
dles the user interaction, e.g., receiving user input and visu-
alizing streams. The sequence diagram in Fig. Ib describes
the operation where a user plays or stops a specific stream
by calling operation playOrStop on an instance of class
Streamer, which then initiates the playback of a movie
or stops the playback. The state machine diagram describes
the possible states of class St reamer. When a Streamer
is in the state stopped and a user changes the state by
calling playOrStop then the state machine transitions to
the state playing (the reverse happens if playOrStop
happens again). To distinguish those two transitions in
the text, we will annotate them with t1[playOrStop]
for the transition from state stopped to playing, and
t2 [playOrStop] for the transition from state playing
to stopped.

In this paper, we use the Object Constraint Language
(OCL)[37], adeclarative language based on first order logic,
to define our consistency rules for UML models. Table 1
shows three examples of consistency rules (CRs). Consis-
tency rules define specific constraints that must hold in
software models. These constraints express relations among
model elements that can range from well-formedness to very
domain-specific ones for non-functional properties such as
maintainability or usability [42]. CRI ensures that all mes-
sages in a lifeline have an equally named operation in their
corresponding class. CR2 ensures that every transition in a
state machine diagram has an equally named operation in its
corresponding class. CR3 checks that every transition in a
state machine diagram has an equally named message in its
corresponding lifeline.

Consistent change propagation within models

& uUser s:Streamer
| 5 |
: playOrStop < olavi
| 1] asd
) | i o shabasi' = | t1[playOrStop] t2[playOrStop]

£ user |- Streamer | U Y
& stopped |
| & o[playOrStop] () | | J

(a) Class diagram

Fig. 1 UML model snippets of VOD system

Table 1 Consistency rules

(b) Sequence diagram

(c) State machine diagram

Consistency Rule 1 (CR1)—Every
message has to have a correspond-
ing operation in the lifeline’s class.

Consistency Rule 2 (CR2)—Every
transition has to have a correspond-
ing operation in the state machine
diagram’s class.

Consistency Rule 3 (CR3)—Every

transition has to have a correspond-
ing message in the lifeline.

context: Message self.class.operations->exists(o:self.name =o.name)

context: Transitionself.class.operations->exists(o:self.name = o.name)

context: Transitionself.lifeline.messages->exists(m:self.name =m.name)

The focus of this paper is supporting developers in prop-
agating changes. Hence, the initial change is made by the
developer. For example, letus imagine that a developer wants
to split the playOrStop transition into two separate tran-
sitions play and stop. The developer may initiate this by first
renaming transition t1[playOrStop] to tl[play].
However, doing so causes two inconsistencies:

I1 Vielation of CR2. There is no operation named playin
class Streamer for the new transition play.

I2 Vielation of CR3. There is no incoming message play
to lifeline s : St reamer for transition play.

Our approach assumes that the initial developer change
was performed with intent (i.e., the software engineer wants
to evolve the state machine diagram in this manner). The
resulting inconsistencies need to be repaired with respect to
this intent.

It is easy to see that these inconsistencies imply incom-
plete changes. Splitting playOrStop requires additional
changes in the sequence and class diagrams. Without auto-
mated support, the developer may be unaware of this prob-
lem. Even if the developer knows about the inconsistencies
then she may not know which further changes are needed to
resolve the inconsistencies. It is important to note that there
are many alternatives to propagate a change throughout the
whole model. A repair mechanism that does not understand

the developer’s intent would for instance, suggest to repair
I1 by either (1) renaming transitionplaytoplayOrStop,
(2) adding an operation with name play to the model or (3)
renaming the existing operation playOrStop. Obviously,
repair 1 is valid but contradictory to the developer’s intent.
Repairs 2 and 3 appear reasonable but what are their effects?
Are they equal? For example, repair 3 would resolve I1 but
it would introduce further inconsistencies. Moreover, recall
that the initial developer change caused two inconsistencies.

Starting to propagate the developer change by fixing T1
is one possibility. Another possibility is to propagate it by
fixing I 2, for example renaming message 1 :playOrStop
(in Fig. 1b) to play, but that causes a new inconsistency I3.

I3 Violation of CR1. There is no operation named play in
class Streamer for message play.

To fix I3, we further propagate the above repair by adding
a new operation play to class Streamer, which fixes I3
and also I1. After this step, the model is consistent and the
developer’s change from the state machine diagram has been
propagated to all corresponding diagrams. While the repair-
ing of I2 with the consequence I3 has the beneficiary side
effect ofalso repairing of I1, the opposite could be true also:
the repair of T2 with I3 could contradict T1.

Please note that instead of adding an operation named
play to class Streamer it would be also possible to

@ Springer

R. Kretschmeretal.

rename operation playOrStop to play, which propagates
the developer’s change, but creates two new inconsistencies:
no operation for message 2 :playOrStop and no opera-
tion for transition t 2 [playOrStop] inclass Streamer.
To fix those two inconsistencies we can add operation
playOrStop to class Streamer, which would result in
the same consistent model state as shown above (i.e., pres-
ence of operations play and playOrStop). This is an
alternative sequence of propagating the change, but it needs
one additional action to fix the new inconsistencies.

As another example after play has been propagated, the
software engineer changes the transition t 2 [playOrStop]
in the state machine diagram to s top. This again causes two
inconsistencies:

I4 Vielation of CR2. There is no operation named stopin
class Streamer for transition stop.

I5 Violation of CR3. There is no incoming message stop
to lifeline s: St reamer for transition stop.

This time we start propagating the developer’s change to
class Streamer by fixing I4. Again we have two possibil-
ities: either we add operation stop to class Streamer or
we rename operation playOrStop. Renaming the already
existing play should not be done here, since it has been
propagated beforehand, and would undo this propagation.
We can rename operation playOrStop to stop and then
rename message 2 : playOrStopalsoto stop. Thus, class
Streamer then only contains two operations play and
stop and the model is consistent. However, as an alterna-
tive, we can also add an operation stop to Streamer,
the result would be three operations (e.g., play, stop,
playOrStop) in class Streamer after reaching a con-
sistent model state.

All these repair sequences are alternative change propaga-
tions that are a consequence of the initial developer change
to reach a consistent model state again. As this example illus-
trates, repairs should follow the developers’ intent, and there
are alternative possible repair sequences, for satisfying this
intent. Invalid repair sequences do not resolve all inconsis-
tencies caused or may change the developer’s intent (e.g., by
overwriting the developer change). Our approach propagates
the change of the developer by computing relevant repairs
only, and not all possible repairs in contrast to the existing
work in literature.

3 Background

This section provides definitions and examples of the most
important terms for a proper understanding of this paper, as
well as an explanation of the consistency checking mecha-
nism.

@ Springer

3.1 Definitions

Definition 1 Model. A model M consists of model elements
(me € M) where model elements can have properties py. A
property of a model element is referred to by element dot (.)
property name, e.g., "Streamer.name”. A diagram is simply
a subset of model elements from the model.

Definition 2 Consistency Rule A consistency rule is a con-
dition defined for a context. For example, CR1 from Sect. 2
defines a condition that every message has to satisfy. The
condition itself is a hierarchically ordered (tree-based) set
of expressions, where the root expression corresponds to the
condition as a whole and its subexpressions correspond to
parts of the condition.

An expression identifies an operation, has a single par-
ent and one or more children and values to be validated
(se2v). Recall that CR1 has two parts: an exists expression(-
>exists(...)) and an equals expression (=). The equals
expression has two children: self.name and o.name,
both are leaf expression. Typically, leaf expressions either
access model elements or are constants.

Definition 3 Validation Tree A consistency rule validated
on a specific model element is a validation. For example,
there are two messages in Fig. 1b: 1:playOrStop and
2:playOrStop. Hence, there are two validations, one for
each message. Each validation checks if a consistency rule’s
condition validates to true for its given context. This can
be done recursively for every expression/subexpression of
a condition. The root expression of a condition is expected
to validate to true, however, as earlier work has shown, this
expectation may change with subexpressions (e.g., because
of negations [42]). A validation tree mirrors the tree structure
of the consistency rule condition. However, in case of repeti-
tions (e.g., exists quantifier above) their (sub)tree structures
repeat for every iteration. Hence, the validation tree is an
exact log of each operation computed during the validation
of a condition. As an example, Fig. 3 shows a validation tree
for CRI. This validation tree will be explained in detail in
the next section.

Definition 4 Scope Element. A scope element is a model
element and its properties (e.p) accessed during the valida-
tion of a consistency rule. A set of scope elements is called
a scope. The scope is derived from the various property call
expressions of the validation tree.

Definition 5 Repair Action. A repair action defines a
change to a model that resolves an inconsistency in part or
full (often multiple repair actions are needed to resolve an
inconsistency). A repair action contains the model element
(me), the property (py) that is affected by the change, the
type of operation(op), and a value (v, which can be a model

Consistent change propagation within models

element v € M, or a primitive value v € V) or no value(@)
applied to the property. The following types of changes are
possible: + adds a value, — deletes a value, and = modifies
a model element property to a given value. In addition there
are the constraining changes: #, <, >, where respectively
a property has to be different than value, less than value, or
greater than value. RA is the set of all possible repair actions.

ra € RA := (me.py,op,v),0p € {+, —, =, #, <, >}

Literature distinguishes between abstract and concrete
repair actions, where an abstract repair action has no con-
crete value (v = @). In this paper, we only use concrete
repair actions, since abstract repair actions cannot be exe-
cuted and therefore are not suitable for automated consistent
change propagation.

As an example the inconsistency I 2 discussed in Sect. 2
can be fixed by changing the name of message
1:playOrStop. Expressed as an abstract repair action
this leads to: (1 : pluyOr Stop.name, =, @). Note that this
abstract repair action is a hint and is not automatically exe-
cutable yet, because we do not have a specific value for
1:playOrStop.name.

To fix T2 (from Sect. 2) we can use the following concrete
repair action: (1 : playOrStop.name,=," play"), which
renames 1:playOrStop to "play". Note that it might be
necessary to change multiple scope elements at once to fix an
inconsistency. For that purpose, we define groups of repair
actions as follows.

Definition 6 Repair. A repair is a non empty collection
of repair actions (ra) that fixes a specific inconsistency
(i from the set of all possible inconsistencies l). This
set ruy (repair actions) may contain both repair actions
which can be abstract (isAbstract(ra)) and/or concrete
(—isAbstract(ra)).

(i €, ras € RA;)

Furthermore we define the term abstract repair which
states that the set of repair actions contains at least one

abstract repair action (ra € RA;|(3x € RA|is Abstract(x)),

and we also define the term concrete repair which exclu-
sively contains concrete repair actions (ras € RA;|(Vra €
ras|=is Abstract(x)).Please note that only aconcrete repair
is able to fix an inconsistency automatically.

As an example, I2 from Sect. 2 can be fixed by changing
the name of message 1: playOrStop. Expressed as a con-
crete repair this leads to: (12, {(1 : playOrStop.name, =,
"play"}). Basically each correct value leads to a concrete
repair.

Definition 7 Developer Change A developer change is a sin-
gle intentional modification of a model element performed
by human. A developer change is similar to a repair action
(i.e., it affects a model element, one of its properties, has an
operation +, —, =, and always a concrete value v); however,
it may create or repair new inconsistencies, or it may have
no effect on the model’s consistency.

(me.py € M, op,v), op € {+, —, =}

As anexample, consider the developer change from Sect. 2
where a developer renamed transition t1 [playOrStop]
toplay. Expressed as tuple this leadsto: (t1[play Or Stop].
name, =, " play")

Definition 8 Model State A model state represents an
applied change to the model r (through the execution of a
repair) leading to a changed set of inconsistencies (i), where
at least one inconsistency is repaired, and possibly new incon-
sistencies are caused. Every model state has a preceding
model state (one change applied before) called parent p and
a set of multiple succeeding model states (multiple repairs
applied after) called children ¢ forming a model state tree.

reR,peMS,cCcMS,icl)

As an example, consider the change of renaming message
1:playOrStop to play from Sect. 2. Expressed as tuple
this leads to:

((12. ((1 : playOrStop.name, =, " play")}), @, @, {11, 13}}

Definition 9 Repair Sequence A repair sequence represents
a list of repairs, which (when executed in order) lead to a
final model state where the initial developer’s change has
been propagated. The set DC represent all possible developer
changes in the model.
(ueDC,{reR,...,r, eR))

For instance, a repair sequence from Sect. 2 is:

({t1[play OrStopl.name, =, " play"), ({12, {(1 : playOr
Stop.name, =, "play")), (I3, {{Streamer.operations, +,
play})))

Which first applies the developer change (rename t1
[playOrStop] toplay)thenmessage1: playOrStop.
name to play and finally adds an operation play to class
Streamer.

Definition 10 Model State Tree A model state tree repre-
sents sequences of repairs that propagate a developer change
to a consistent model state. The repair sequences are implic-
itly represented by the hierarchy of the model states. A model

@ Springer

R. Kretschmeretal.

Fig.2 UML class diagram for 11" 11,7 . g
the definitions Model Model Element > Property Value
1 1 1
context ! i | [
Consistency Rule B Validation Tree L Scope Element L
1
1 1 1
4 g) = o .)
< Expression Operation Repair Action
L 1 =
1
“{ Dev. Change - Repair
1 _| T4
! 11 ‘1. 1 children
Model State Tree Model State | >
root 0 pamnt

tree’s origin is always a developer change dc, it consists of
at least on model state and an arbitrary amount of original
inconsistencies oi (e.g.. inconsistencies present before the
developer change has been applied to the model). Please note
that we do not consider those inconsistencies, since they are
not created by the developer change. We only use consistent
propagation for the new caused inconsistencies.

(dec € DC,ms < MS, oi C)

3.2 Relations of the defined terms

For a better understanding of how our defined terms are
related to each other, we give an overview in Fig. 2. This
figure shows a UML class diagram of the definitions from
the previous section depicted as classes (without attributes)
and their associations. For instance a Validation Tree
has exactly one Model Element as context element,
depicted as associationfromValidation TreetoModel
Element with the name context. In turn, one Model
Element can be used by multiple Validation Trees
as their context element.

The boxes highlighted in grey are the foundation of our
approach and are provided by an engineer.

3.3 Consistency checking

Consistency checking is a well-covered topic in literature.
In this section, we explain one such approach on a simple
example. To illustrate the consistency checking mechanism,
we use CR1 from Sect. 2.

context: Message self.class.operations
->exists (o:self.name = o.name)
Figure 3 shows the instantiation of CRI for the mes-

sage play. The root expression represents the model

@ Springer

self[play:Message]

F 3 o:Operation in {playOrStop}

o=playOrStop
/F=\
self. name["play”] o.name["playOrStop”]

Fig.3 Validation Tree for CR1

element, for which the consistency rule is instantiated
self [play:Message].Thenextexpressionisanexists
expression (3) where at least one of its children has
to fulfill the condition defined in CRI (self.name =
o.name).

At the exists expression we create one subtree for oper-
ation playOrStop, which is in the corresponding class
Streamer of the message play. Remember that message
play is the modification performed by a developer (i.e., the
developer change) from Sect. 2. If there would be more oper-
ations, every operation results in its own subtree in Fig. 3.
This subtree represents an equals expression (=) which com-
pares the values returned by their children for equality. The
comparison is between the message’s name play and the
operation’s name playOrStop.

The scope elements of those expressions in the validation
tree in Fig. 3 are [play:Message] .name, [playOr
Stop:0Operation] .name, Streamer:Class and
s:Lifeline. Together those four scope elements form the
scope for CR1.

In the validation tree, the root expression is expected to
validate to t rue (i.e., consistent) and so its children expres-
sions. For example, the 3 and = expressions in Fig. 3 are
also expected to validate to true. If the root expression vali-
dates to fal se, then we detect an inconsistency. Tocompute

Consistent change propagation within models

the validation result of a validation tree, we start from the
leafs (bottom) and start computing the validation result of
the subexpressions (parent nodes) and continue this process
until the root expression.

InFig. 3,since the name "play" isunequal to "playOr
Stop", the subtrees’ validation result is false (denoted
with a red F). At the exists expression (3), there has to exist
at least one subtree in its children with the validated result
true, but in this example the subtree validates to false.
Thus, the exists expression validates to false, which is the
same validation result of the root expression. This is how the
inconsistency I1 from Sect. 2 is detected in the model based
on its validation tree.

3.4 Repair generation

In the previous subsection, we explained how inconsistencies
in models are detected. In this section, we introduce, why we
can repair arising inconsistencies in software models. Before
computing the repairs, we first need to identify the cause of
an inconsistency.

Take again the inconsistency I1. To identify the cause for
I1 we take the scope from the previous section scope =
{[play:Message] .name, [playOrStop:

Operation] .name,Streamer:Class,s:Lifeline}.

We then check for every scope element, if it is part of a vio-
lated expression, i.e., validation result # expected result (val-
idationresult of those expressionsis false in Fig. 3), we add
it to the cause of the inconsistency. The cause of ourexample
shown in Fig. 3 is cuuse = { [play:Message] .name,
[playOrStop:0Operation] . name, Streamer.
operations }.

To generate repair actions, we iterate over every
scope element in the cause and look for every violated
expression were the scope element is used. We then gener-
ate a change (i.e., repair action) so that the direct violated
expression is validated. For instance, the scope element
[playOrStop:Operation] . name is used in the vio-
lated = expression in the right-hand side of the validation tree
shown in Fig. 3. Based on this expression we know that the
equals condition =is not fulfilled, since name playOrStop
is unequal to name play. Therefore, the repair action for the
scope element playorstop would be to rename it to play
(playOrStop.name, ®, " play"), which leads to the repair
(I'l, {{playOr Stop.name, ®, "play")}) that fixes I1 when
executed.

However, changing the name of operation playOr Stop
to play is notthe only valid repair for fixing I1. Based on the
= expression inFig. 3, another repair can be generated for the
scope element pl ay whichis to rename message play back
to playorstop (/1, {{play .name, =, "playOr Stop")}).
This repair also fixes 11, however it would not make sense to
rename play to playOrStop as it would undo the initial

developer change. For a more detailed explanation of the
repair generation mechanism, please refer to [40].

4 Change propagation approach

This section presents our automated approach to consis-
tently propagate a developer change to other parts of the
model. The resulting sequences of repairs guide the developer
towards a consistent model state containing the information
provided by the initial developer change. First we give a gen-
eral overview, then we describe how we perform the change
propagation.

Figure 4 shows the basic workflow of our approach, which
consists of the following three stages.

The first stage dI'} applies the developer change to the
model and identifies arising inconsistencies caused by this
change. To detect those inconsistencies, consistency rules
written in OCL are applied to the model via a consistency
checking approach (e.g., [41.42.54]). Those approaches
come up with abstract repairs, which can be transformed to
concrete repairs by using [13,23].

The second stuge creates a model state tree for each
of the initial developer changes causing inconsistencies. The
model state tree explores new model states by repairing aris-
ing inconsistencies, where every repair leads to a new model
state.

The third stage () analyzes the model state trees gen-
erated in the previous stage. This stage looks for final model
states that are consistent (i.e., the leafs) and collects every
repair applied from the root to those model states. Of course,
there can be many possibilities of propagating a change
resulting in a consistent model state. In the end the devel-
oper has to choose which one of them satisfies her needs.
To help developers in choosing a repair sequence, we rank
the repair sequences (from shortest to longest) based on the
number of repairs.

4.1 Stage 1: Initial model state tree

The first stage @ applies the provided developer changes
sequentially (one after the other) through the impacted model
elements and diagrams. After all developer changes have
been applied, each developer change has a corresponding
model state tree as defined in Sect. 3. Those model
state trees can then be used to provide repair sequences for
each developer change. Algorithm 1 illustrates the first stage
of the developer change application.

The function propagateChanges takes a set of
developer changesandretumsasetof model state
trees for each of them. From Line 3 to Line 6 we iter-
ate over every provided developer change ch in changes

@ Springer

R. Kretschmeretal.

Fig.4 Overview of our
approach

Detect

Inconsistencies:

Developer
Change

\
=

Algorithm 1 Create model state trees for the provided devel-
oper changes
1: function PROPAGATECHANGES(changes € CH)
2: roots=@
for all ch € changes do
ol = getInconsistencies()

3
4:
5: apply(ch)
6.
T
8

causedInconsistencies = getlnconsistencies() \ ol
for all r € getRepairs(causedInconsistencies) do
3 & Create new state at level 0
9. rool=(r, @, &, r.i)

10: propagateRepair(root, 0, ol, r)

11: & Collect all ch with corresponding trees
12: roots = roots U (ch, root)

13: end for

14: undo(ch)

15: end for
16: return roots
17: end function

and check the consistency of the model before we apply
ch. This prevents the interference from already existing
inconsistencies in the model. We then apply ch and check
the model for the caused inconsistencies (caused by ch)
(causedInconsistencies) by removing the already
existing inconsistencies from the new set (\ is the set
difference operation). Inconsistencies present before the
application of the developer change are not considered for
change propagation, since they are not caused by the devel-
oper change. However, as they are inevitably caused by
previous changes, they could naturally be repaired with our
current work by considering their causing changes too. For
the sake of simplicity, we focus on new inconsistencies
caused by developer changes.

From Line 7 to Line 16 we first iterate over every
possible repair r from the caused inconsistencies (r € getRe-
pairs(causedInconsistencies)).

The function getRepairs () generates repairs based
on validation trees (see Sect. 3.4), which originate from the
provided consistency rules. We use our previous work [23,
40,42] to compute repairs. However, our change propagation
approach is generic and can work with repairs computed by
any of the existing related works.

@ Springer

Analyze

Change Repair
Propagation I Tree Sequences
: A TR "
; *Oo—>0—>0—>0
: | A ry fg

Table2 Repairs for T1, 12, I3, I4 and 15

Abbreviation Repairs

Rl (I'l, {{elplay OrStop).name, =, play)})

R2 (11, {(Streamer .operations, +, play)})

R3 (12, {(1: playOrStop.name, =, play)})

R4 (12, {(2: playOrStop.name, =, play)})

RS (12, {{(s : Streamer.messages, +, play)})

R6 (I3, {{elplay OrStop).name, =, play)})

R7 (I3, {(Streamer .operations, +, play)})

RS (14, {{(Streamer .operations, +, playOrStop)})
R9 (15, {(Streamer .operations, +, playOrStop)})

After that for each repair, we create a new model state
at level 0 with the original inconsistencies oI (every sub
model state needs to know them, to avoid propagating their
repairs), no parent, no children (at this moment) and the repair
r itself. We then start the propagation of the current devel-
oper change ch for every subsequent repair r by calling
propagateRepair() (slage. After the propagation of one
developer change chin changes, we undo the change (call-
ing undo (ch)) so that we can propagate the next change
without interference from the previous one. Afterall changes
have been propagated we return their model state trees, so
they can be analyzed afterwards (stage . Stages |2 | and
are discussed in the next sections.

As an example to better illustrate the first stage @)'
consider the model shown in Fig. 1 and the developer
change (t1[playOr Stopl.name, =, "play") from Sect. 2.
In this example, we have one developer change to propagate
ch=(t1[playOrStop].name, =, " play"). Before we apply
ch there are no inconsistencies in the model (oI = @). After
the application of ch, the two inconsistencies I1 and I2
from Sect. 2 are detected (causedInconsistencies=
{ I1,I2 }). The possible repairs for those two inconsisten-
cies can be seen in Table 2.

Of course another additional repair for both incon-
sistencies would be to rename transition play back to
playOrsStop, but this would undo the developer change

Consistent change propagation within models

ch=<t1[playOrStop].name, =, "play">
R5

1

Fig. 5 Initial model state tree for a developer change

and performs no propagation. Hence, it is not considered
as relevant repair option. After those first repairs have been
found, we get an initial propagation tree with only one level,
as shown in Fig. 5. This tree depicts all possible model states
(labeled with 1 to 5) after applying the repairs shown in
Table 2. All the shown repairs have the same structure, where
either a value is modified (=) or an element added (+).
For instance, R1 renames operation o [playOrStop] to
play, and R2 adds an operation play to class Streamer.

4.2 Stage 2: Model state propagation

The next step is to further propagate those repairs towards a
consistent model, since those five repairs cause subsequent
inconsistencies. The second stage () depicts this process
shown in Algorithm 2.

Algorithm 2 Propagate developer change through the model
1: function PROPAGATEREPAIR (parent, level, ol C I r €)

causedInconsistencics = getlnconsistencies() \ ol
causedRepairs = getRepairs(causedInconsistencics)
9: children = @

10: for all repair € causedRepairs do

11: & Create new state for next tree level

2: if level > maxLevel then

3: & Stop propagation il there arc too many tree levels
B return

5: endif

6: apply(r)

7:

8:

12: child = (repair, parent, children,r.i)
13: children = children U child

14: end for

15: for all ¢ € children do

16: propagateRepair(c, level+1, ol, r)

17: end for

18: undo(r)

19: end function

From Line 2 to Line 6, we check the current model
state reached the limit of the current model state tree by
checking its 1evel with the maximum admissible level
(maxLevel). This is done to skip propagation in cases
where it takes too long to reach a consistent model state
(i.e., to much inconsistencies caused by subsequent repairs).
It also aims to skip cycles of repairs that would lead
to an endless recursion in the tree. We then apply the
repair to the model to possibly get new inconsistencies

ch=<t1[playOrStop].name, =, "play">

%/\n;{\ A

R2 RB
10 1

Fig.6 Model state tree for a developer change

(apply(r)). From Line 7 to Line 14 we retrieve new
repairs from the inconsistencies caused by the application of
repair r (getRepairs (causedInconsistencies))
with respect to the original inconsistencies oI. Repairs
from oI are not considered for the propagation, since
they have not been created by the initial developer change.
If there are no new repairs, our algorithm has found
a consistent model state and the developer change has
been propagated successfully. If we detected new repairs
(causedRepairs not empty) we create a new model state
for each repair at the next level (Level + 1)and add this
new state to the children of the current state (children
= children U child). Then, we continue propagat-
ing the change for every child recursively to the next level
(propagateRepair (c, level+1, oI, r). After every
recursive step, we undo (undo (x)) the applied repair to
restore the parent model state and to explore another branch
in the tree.

After running the algorithm 2, the model state tree in Fig. 5
is augmented by propagating the subsequent repairs R1-R5
resulting in the model state tree shown in Fig. 6. Take for
example R3, as mentioned in Sect. 2, R3 repairs I2 butalso
creates a new inconsistency I3 which can be repaired with
the repairs R1,R2, R6, and R7.

For simplicity, let us focus on the propagation of two
repairs R6 and R7 in this example. First we select R7 and
propagate this to the next model state 9 (c.propagate
Repair (3)). After we apply R7 in model state 9 (apply
(R7)) we detect no more inconsistencies, and therefore no
more repairs. So we undo R7 and return to model state
3. Model state 9 now represents a consistent model state
(marked with a circle) in which the initial developer’s change
has been propagated successfully. Back in model state 3 we
now select R6 (the next repair in collection children).
We then continue propagating the change to the next model
state 8. After we applied R6 we create two new inconsisten-
cies T4 and IS5 (no operation playOrStop for message
2:playOrStop and transition t2 [playOrStop]) with
the corresponding repairs shown in Table 2. In model state 8,

@ Springer

R. Kretschmeretal.

we now propagate R8 and R9 to the consistent model states
12 and 13.
Model states 9, 12 and 13 represent now model states in

which the initial developer’s change (1 1[play Or Stop].nume,

=, "play") has been propagated and all related incon-
sistencies have been fixed. The second developer change
(12[playOr Stopl.name, =, "stop") (from Sect. 2) is propa-
gated following the same principles as shown in this example.

4.3 Stage 3: Analyze model state tree

In stage three || , weanalyze the model state trees that have

been computed in stage to derive the repair sequences
which propagate the developer change and lead to consistent
model states. This is performed with a simple depth first
search. For example, from the model state tree shown in
Fig. 6, after analyzing the subtree R3, we get three repair
sequences (repairs from Table 2) which propagate success-
fully the developer change:

(t1[playOrStopl.nume, =, "play”) : (R3, RT)
(t1[playOrStopl.name, =, "play") : (R3, R6, R8)
(t1[playOrStopl.name, =, " play") : (R3, R6, R9)

We also rank those sequences based on the amount of
repairs, which makes the selection process easier for the
developer from shortest to longest. In the end, the devel-
oper has to decide which one of those repair sequences fits
the most her needs and requirements.

5 Evaluation

We evaluate our approach by assessing its correctness, scal-
ability and usefulness. For the evaluation, we applied 20
consistency rules to 18 models taken from three different
sources: academia (VOD, Curriculum Planer, Course Sys-
tem, Hotel Management, Calndarium), industry (eBullition,
MVC, Inventory, Tele, Vacation System, Home Control Sys-
tem, DESI, Micro, iTalks, Dice, dSpace) and GitHub (Prol 1,
fullAdder) [11], and one model used in an experiment for
this paper. The domains of the models range from control
of a microwave oven to a model view controller of software
and an inventory storage management system. Two of these
models from GitHub have two versions each, where version
one had inconsistencies that had been fixed in version two by
a developer. This further allowed us to assess the quality of
our approach and the relevance of our repairs, i.e., whether
the manually applied repairs by the developers could be repli-
cated by our approach. The model sizes ranged from 300 to
8800 model elements, the number of applied changes from 1
to 29 and the sum of all repaired inconsistencies during the

@ Springer

propagation of all changes from 4 to 99. Table 3 shows those
details per model. Note that our implementation has a compi-
lation module integrated to check the syntactical correctness
of the OCL consistency rules. The data set is archived in
the FigShare platform' to be used for reproducibility and
for comparison purposes. We executed the evaluation on a
Windows 10 PC with a Core i7 3.4GHz and 32GB RAM.

5.1 Research questions

In this section, we define three research questions (RQ) to
evaluate our approach.

RQ1: To what extent is it possible to propagate a devel-
oper change based on model consistency information? This
aims to investigate if it is feasible to propagate developer
changes based on caused subsequent inconsistencies through
the model.

RQ2: How many consistent model states does our
approach find, what is the average length of the found repair
sequences, and how much time did it take to compute the
model state trees? This aims to investigate the performance
and scalability as well as the correctness of our approach,
when a developer change has been successfully propagated
through the model.

RQ3: Does our approach also find repair sequences a
developer would have applied to the model? This aims to find
out if we can reproduce relevant repair sequences a devel-
oper also would have performed to propagate a change when
repairing her inconsistencies, thus assessing our approach
usefulness.

5.2 Results
5.2.1 RQ1

To propagate developer changes, we needed models where
developers modified the model, and those modifications led
to inconsistencies. Our models (VOD to experiment) are
inconsistent, but we do not have the original changes which
caused them. However, we can treat their repairs as devel-
oper changes that might further cause inconsistencies and
thus can be propagated in our approach. First, we use our
models from Table 3 with the already existing inconsisten-
cies (present before any applied change). We then analyze
those inconsistencies and treat the resulting repairs as devel-
oper changes. After all, a repair is similar to a model change
with the same implications as a change made by a developer.

Since we convert abstract to concrete repairs based on
[23], it may happen that this approach is not able to find
concrete repairs for a given abstract repair. In this case, we
use other abstract repairs from the same inconsistency. In

! hups://figshare.com/s/e27177256a9dc10693d2

Consistent change propagation within models

Table3 Model information

Model name #Model clements #Changes Sum repaired Incon. Source
proll 284 2 4 GitHub"
full Adder 992 1 5 GitHub®
VOD 467 3 8 Academia
Curriculum Planer 868 26 99 Academia
cBullition 1346 5 22 Industry
MVC 1410 2 9 Industry
Inventory 1422 17 81 Industry
Tele 1471 7 21 Industry
Course System 1620 2 91 Academia
Vacation System 1805 9 21 Industry
Home Control System 1882 10 89 Industry
DESI 2056 3 3 Industry
Micro 2346 5 9 Industry
iTalks 2462 9 58 Industry
Hotel Management 2790 3 15 Academia
Calendarium 3263 20 50 Academia
Dice 4485 16 30 Industry
dSpace 8859 5 5 Industry
experiment 210 - 21 Academia

*https://github.com/ 1 I TCLC-DA-CNPM/doan-cnpm-quanly-ban-dien-thoai-pro1 I cle/
b https://github.com/acdoorn/design- patterns/tree/master/diagrams/

the cases where there are no concrete repairs for an entire
inconsistency, e.g., a completely new class must be added to
the model, we cannot propagate the change further. In this
case, user intervention might be necessary. However, this
was never the case. In fact, we are able to transform for each
inconsistency at least some abstract repairs to concrete ones.

We successfully propagated 176 changes, each leading to
one propagation tree, in our 18 models and repaired a total
amount of 642 inconsistencies during this process leading to
hundreds of repair sequences. For instance, we propagated
five changes in model Micro while repairing nine caused
inconsistencies. This shows the feasibility of our approach
that it can indeed successfully propagate changes to consis-
tent model states.

5.2.2 RQ2

Additionally, we also analyzed how many consistent model
states we were able to detectin all our models. Table 4 shows
the results of this analysis. Column #Repair Sequ.
shows the total amount of all repair sequences of all propa-
gated changes per model leading to a consistent model state.
Please note that we added a limit (i.e., maximum tree level)
to the model state trees of 50 repairs, which limits the maxi-
mum amount of repairs in a repair sequence to this number.
This limit was introduced in cases where the propagation
takes too long, resulting in too many repairs. However, we

never reached this limit, and the maximum length of all repair
sequences was 37 repairs. Each repair sequence represents
one possibility to propagate a change to a consistent model
state. This shows the correctness of our change propagation
which allows developers to reach a consistent model state.

The column Avg Sequ. Length shows the average
length of all repair sequences per model. This means that
in most cases a developer change can be propagated with
one to 21 repairs. Column time shows the average time per
model it took to propagate a change to a consistent model
state. In most cases, we are able to propagate a change within
milliseconds up to 10 minutes.

For example, applying five changes to the model Micro
leads to a total amount of 76 repair sequences (15 on average
per change) and an average repair sequence length of 2. To
detect all 76 repair sequences our approach needed 367ms.
Please note that a developer would propagate each change
by looking at the computed repair sequences. From those
sequences she might choose the one with the least amount
of repairs, or one which affects only specific parts of the
model (e.g., class diagrams). After that she can choose the
next developer’s change to be propagated. The breadth of the
model state trees ranges from two to 176.

The time deviations in the column time from Table 4
are explained by the applied consistency rules and the result-
ing inconsistency. On smaller models (# Model Elements),
the change propagation might take longer than on larger

@ Springer

R. Kretschmeretal.

Table 4 Evaluation results

Model name #Repair Sequ. Avg repair Sequ. length time [s]
proll 34 3 0.065
full Adder 29 3 0.075
VoD 60 3 0.076
Curriculum Planer 937 4 25
cBullition 434 6 3
MVC 73 3 0.313
Inventory 4875 13 19
Tele 163 4 7
Course System 2650 6 0.924
Vacation Planer 620 4 0.842
Home Control System 3453 16 583
DESI 10 1 3
Micro 76 2 0.367
iTalks 1248 8 291
Hotel Management 955 21 I8
Calendarium 834 B 34
Dice 342 4 0.672
dSpace 18 1 1
experiment 651 7 0.297

models since the inconsistencies can be more dependent
on each other, i.e., repairing one inconsistency causes more
inconsistencies. Furthermore, the complexity of the incon-
sistency plays also a major role, i.e., the amount of model
elements affected by the inconsistency and the amount of
OCL expressions used from the consistency rule. One com-
plex inconsistency can have more impact on the runtime than
many simple inconsistencies.

5.2.3 RQ3

To assess the quality of our generated repair sequences,
we applied the same strategy (explained in RQ1) to the
two versioned models (prol1 and fullAdder) from GitHub,
and compared the repair sequences applied manually by the
developers to our computed repair trees. We were able to
generate repair sequences consisting of all the repairs the
developers also have applied in their manual repair from
version | to version 2 in proll and fullAdder. Additional
20 alternative repairs were provided per change on average.
This shows that our change propagation approach is useful in
computing repair sequences that developers actually applied
manually. However, the limitation of those two models is,
that we did not know the initial developer’s change and we
do not know how the actual change propagation process was
executed. For example, how did the developers come up with
possible repairs for the inconsistencies? How long did it take
to propagate their change and how many modeling experi-
ence do they have? To gain more evidence we conducted

@ Springer

an experiment to investigate change propagation based on
model inconsistency repair.

The experiment was performed with students who had to
propagate a set of changes and repair caused inconsistencies.
For each inconsistency, a set of repairs was provided. In total,
subjects had to repair four inconsistencies from two consis-
tency rules with 46 repairs in total (minimum of 8 repairs and
a maximum of 14 repairs per inconsistency).

The premise was always the same: The subjects were
given inconsistencies with their possible repairs, and they
were asked to choose one repair per inconsistency which
propagates the initial change causing the inconsistency. The
experiment thus set the initial condition toexplore how devel-
opers propagate initial changes by repairing inconsistencies.
Thus, we can compare the results with our automated change
propagation approach.

In the experiment 22 students participated, all master-level
computer science students at our university. Their profes-
sional programming/developer experience was an average of
2 Years and 3 months. We used a medium sized UML model
consisting of Class, Sequence, and State chart diagrams with
the consistency rules from Table 1.

In the experiment, every student came up with one repair
sequence for each of the four provided changes. Those
sequences contained on average four repairs consisting of
renaming, removing already existing model elements or
adding new model elements. Most of the applied repairs were
renames of model elements. Only two students focused on
adding new model elements (e.g., adding an operation or

Consistent change propagation within models

message). Also, every repair sequence from the students was
unique, since everyone chose at least one repair the others
did not. Thus we can compare our change propagation with
22 different repair sequences.

Our approach was able to generate all repair sequences
from all students and additionally suggested 15 alternative
repair sequences. For example, one change was to propagate
a rename of a transition (similar to the one from Sect. 2).
One student chose to propagate the change by first adding
this operation to the corresponding class and then renam-
ing the corresponding message in the sequence diagram.
Another student chose to rename first a message from the
class’ corresponding lifeline, then adding this operation to
the transition’s corresponding class. Our computed model
state tree in this case provided both applied repair sequences.

This further shows the usefulness of our approach todevel-
opers in repairing inconsistencies with change propagation.
The time to generate the propagation tree for our four changes
was 300ms (75ms on average per change). The average time
for the students to propagate all four changes 15 minutes
(3.75 minutes on average per change). Using our approach
would thus reduce the time significantly needed to propagate
a change in a consistent manner.

6 Threats to validity

In this section we discuss internal, external and conclusion
threats to validity according to Wohlin et al. [52]

6.1 Internal validity

The internal threats to validity are centered on the used repairs
in our evaluation. As explained in Sect. 5 we needed models
where developers modified the model, and those modifica-
tions lead to inconsistencies. We did not find any models with
this constraint. The threat to validity here is that we were not
able to propagate changes that were directly caused by a
developer. However, interpreting already existing repairs as
developer changes is still a valid strategy, since those repairs
have been caused by a developer change in the past, and those
repairs are a direct consequence of this change. Repairs are
also model changes with the same implications as a change
made by a developer.

To further mitigate this threat we conducted an experiment
(explained in RQ3 from Sect. 5) with 22 students each hav-
ing an average professional experience of two years to three
months. In this experiment, we provided a model and repairs
for inconsistencies. The threat to validity here is that this
model might be biased in a way that favors our approach. To
mitigate this threat we used one of our models from industry
(VOD) and changed the names of some operations, messages,
elc. Also we provided the repairs for arising inconsistencies.

To make sure we do not miss any, we performed a consis-
tency check with our consistency analyzing tool [40,42] that
provided all possible repairs.

Furthermore, the experiment only investigated the useful-
ness of our approach. We did not record the time it takes
for the students to propagate multiple repair sequences, or
choose from a list of repair sequences our approach gener-
ated. We are confident, that this threat is acceptable, since
selecting from an already existing list is easier than creating
the list manually, and then selecting a repair sequence.

6.2 External validity

We implemented our approach for UML and OCL, although
we are confident that the generation of model state trees and
repair sequences is also applicable to other modeling and
constraint languages, we cannot generalize our results to all
modeling constraint languages. However, the only require-
ment to apply our approach to other domains, is to detect
inconsistencies and compute concrete repairs to fix them.
In future work, we plan to evaluate on other modeling and
constraint languages as well.

6.3 Conclusion validity

Our evaluation gives promising results (quantitatively and
qualitatively), demonstrating that our repair tree generation
algorithm is very fast and reduces the amount of work a
developer would have to perform drastically. The results in
our case studies indicate that we are not only able to prop-
agate changes the same way a developer would have had
performed the propagation, but we also suggest additional
correct propagation strategies. Only 22 students participated
in our experiment which is not enough to gain statistical
evidence. However, with those 22 students we were able to
observe that our approach is indeed able to perform useful
change propagation by providing the used repair sequences.
To have more evident results, we plan to evaluate on more
versioned models.

7 Related work

Model evolution has gained significant momentum in the
recent years. Common evolution types range from co-
evolution of meta-models, consistency rules, transformation
rules, etc. They all have in common that a developer change
creates some kind of inconsistency, which has to be repaired
in order to propagate this change.

UML model refactoring [33] can also be seen close to our
work. However, model refactoring is performed on consis-
tent model states while keeping the model consistency, i.e.,
no inconsistencies before or after refactoring. Our approach

@ Springer

R. Kretschmeretal.

in contrast is able to perform the change propagation from
inconsistent model states to consistent model states. Our
work is rather complementary by repairing possible incon-
sistencies caused by refactoring or any model change.

In this section, we present and discuss approaches that are
closest 1o ours.

Inconsistency checking and repair: Our approach relies
on detecting inconsistencies and repairing them to be able to
create new model states and propagate a developer change
to impacted model elements. Briand et al. [1] proposed an
approach to check UML consistency by applying an impact
analysis to identify consistencies in UML models. Konig and
Diskin [21] proposed an algorithm for consistency checking
on inter-related models to reduce cost of inconsistency detec-
tion due to model merging. There is also approaches that rely
on formal methods to detect inconsistencies (e.g., [2,19,46]).
Moreover, Jongeling [16] proposes to detect inconsistencies
and report on how to live with them in an industrial case
study. In [17] they further allow to detect inconsistencies for
heterogeneous models. Trols etal. [50] also propose to detect
inconsistencies over different kinds of artifacts and not just
models. However, those approaches do not propose repairs.

All other approaches that provide repairs may be used
as input for our approach to generate concrete repairs. For
instance, Xiong et al., Reder et al. and Jackson et al. use
a very similar notation of abstract repairs [15.40,41,54]).
Those abstract repairs can then be used to generate concrete
repairs based on already existing model information (includ-
ing the developer change) [23].

Our approach utilizes a similar method used by Reder et
al. and Kretschmer et al., to detect inconsistencies [42] and
generate possible concrete repairs to fix them [23]. Further-
more, Khelladi et al. propose an approach to rank repairs fora
single inconsistency based on their side effects on the model,
and analyze possible cycles of negative side effect [20]. The
difference between those approaches and our approach is
that we use the inconsistencies and repairs information to
propagate developer changes to a consistent model state.
Reder et al., Kretschmer et al. and Khelladi et al. do not
consider developer changes and multiple model states for
change propagation.

Approaches which use probabilistic generators to derive
concrete repairs are not suited for a developer change prop-
agation, since they might not consider developer created
values or overwrite them during the generation process
[13.,34]. Also they might not provide all possible solutions
for a concrete repair [13,28].

Puissant et al. [39] proposed a planning technique to gen-
erate repair plans for inconsistencies while aiming at a fast
computation of repairs without assessing the relevance of the
repair plans. Taentzer et al. [49] proposed to repair inconsis-
tent models w.r.L. their metamodels. They relied on the model
change history which helped in reducing the amount of pos-

@ Springer

sible repairs. Similarly, Ohrndorf et al. [36] use an initial
change to propose repairs for arising inconsistencies. In con-
trast to those approaches, we propagate a change further than
one repair step, addressing possibly arising inconsistencies.

In summary, the only requirement for other approaches to
be used is that they provide a repair mechanism for inconsis-
tencies which takes also the developer change into account.

Co-evolution: In model co-evolution, there exists a large
body of work on how to detect, resolve and propagate changes
to either the model or metamodel [12,38]. We discuss some
of the most recent work in this section. Kessentini et. al. pro-
pose to co-evolve models based on changes on the metamodel
automatically [18]. They view this process as a multi objec-
tive optimization problem and use a specialized algorithm
to propose a conflict resolution with the minimal amount of
inconsistencies, changes to the model, and information loss.
Furthermore, Mantz et al. propose to analyze metamodel to
model consistency based on graph data structures and use
coupled graph transformation as their co-evolutions [29].

In contrast to those approaches, we do not consider
changes in the metamodel, but we only consider changes in
the model itself. Furthermore, we propagate those changes
only within the model w.r.t. its consistency. Co-evolution is
mainly interested in creating new versions of metamodels or
models based on changes in one or the other.

Change propagation: Semerath et al. propose to propa-
gate a changes in a view model to model instances [44.,45].
The challenge here is, to trace back the change in the abstract
view to the model that involves complex logic analysis,
which is done using SAT solvers. In contrast to their work,
we only consider changes applied to the model, and propa-
gate those changes based on the model’s consistency. There
exist also many approaches dealing with bidirectional model
transformations with uncertainties [7,8,27]. However, those
approaches try to synchronize changes between two models
and only consider the consistency between themselves.

Program repair: In program repair, the literature tries to
suggest repairs for malformed programs. Muglu et al. [35]
proposed to detect consequences of the code quick fixes
but without exploring propagation to repair the program.
Steimann et al., propose an approach for finding fixes for
malformed programs based on constraint attribute grammars
[47.48]. This approach proposes deep fixing which gener-
ates repairs that avoid new violations. Cuadrado et al. [4]
proposed to compute quick fixes for ATL transformations.
They also proposed to detect side effects for each quick fix.
In contrast to our approach, these works do not consider ini-
tial developer changes to automatically propagate. and tries
to avoid negative side effects at all. However, our approach
uses negative side effects to propagate a change, which is
helpful in cases where negative side effects are unavoidable.

Martinez et al., propose Astor a framework for automated
program repair [30]. It defines extension points to which

Consistent change propagation within models

users can attach already existing approaches for code trans-
formations, search space navigation and validation candidate
solutions. Astor generates program variants and generates
patches/fixes for the original program. In this context, many
approaches exists that compute patches for program failures,
such as [24,26,31,43,53] The patches are then validated if
they are indeed able to fix their corresponding bug. Other
approaches propose to use mutation, to mine or to learn
the patches, such as [3,10,22,25] In contrast to those works,
our approach is not a framework for program bug fixes. We
propagate changes based on their influence of a model’s con-
sistency. Furthermore, our approach is based on consistency
rules and a metamodel. The metamodel enables our approach
to be used for different domains, e.g., software models, for-
mal specifications, etc.

The novelty of our approach is that we explore the chain
of consequences of initial changes made by developers. i.e.,
inconsistencies caused. Based on that knowledge we propose
repair sequences a developer can use to continue these ini-
tial changes. In essence propagating the initial changes to
other parts of the model until it is consistent again. Many
existing approaches deal with suggesting repairs for incon-
sistencies. However, they do not investigate the meaning
of sequences of repairs-a recursible exploration of non-
contradictory changes. In that regards, other approaches do
not take under consideration earlier changes made by devel-
opers and ongoing consequences.

To the best of our knowledge, there exists no approach
which performs change propagation of developer changes to
repair their caused model inconsistencies in depth.

8 Conclusion and future work

This paper presented a novel approach for automatically
propagating developer changes. Our approach utilized model
state trees to determine possible propagation strategies (i.e.,
repair sequences) to propagate the change to a consistent
model state. The approach first detects inconsistencies in the
model caused by the initial developer’s changes, and gen-
erates repairs to fix them. It then executes those repairs to
generate new model states and detects new caused inconsis-
tencies in that state. This process is repeated recursively until
no more inconsistencies are caused and the change has been
propagated. We refer to this as consistent change propaga-
tion. As the last step we analyze the model state tree and
present repair sequences which guide the developer in prop-
agating the initial change.

Our evaluation applied 20 consistency rules to 18 mod-
els. To check the relevance of our repair sequences, we used
2 versioned models from GitHub and performed an experi-
ment with 22 students. We showed that our approach provides
repair sequences that developers also have applied and addi-

tionally suggested alternative repair sequences. Furthermore,
we have shown on larger models that our approach is scalable.
We were able to propagate 176 developer changes within
three seconds on average. Our approach saves time and effort
that would have been spent on manually propagating achange
through an entire model.

For future work, we plan to further evaluate on experi-
ments to gain more evidence on consistent change propa-
gation. Additionally, we will apply evolutionary algorithms
to propagate changes in cases where there are too many
repair sequences. This might help in cases where the devel-
oper is overwhelmed by the number of repair sequences our
approach suggests in the end. Finally, we will investigate
other ranking heuristics for the repair sequences.

Acknowledgements This research was supported by the Austrian Sci-
ence Fund FWF P 31989, the LIT Secure and Correct Systems Lab,
and Pro2Future, a COMET K1-Centre of the Austrian Research Pro-
motion Agency (FFG), Grant No. 854184 co-funded by the Provinces of
Upper Austria and Styria, and by the Natural Sciences and Engineering
Research Council of Canada (NSERC) Grant RGPIN-2017-0542.

Funding Open access funding provided by Johannes Kepler University
Linz.

Open Access This article is licensed under a Creative Commons
Adttribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cale if changes were made. The images or other third party material
in this anticle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitied use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Briand, L.C., Labiche, Y., O'Sullivan, L., Séwka, M.M.: Auto-
malted impact analysis of UML models. J. Syst. Softw. 79(3),
339-352 (2006)

2. Cabot, J., Clarisé, R., Riera, D.: On the verification of UML/OCL
class diagrams using constraint programming. J. Syst. Softw. 93,
1-23 (2014)

3. Chen, Z., Kommrsch, S.J., Tufano, M., Pouchet, L.N., Poshy-
vanyk, D., Monperrus, M.: Sequencer: sequence-lo-sequence
leaming for end-to-end program repair. IEEE Trans. Softw. Eng.
(2019). hups://doi.org/10.1109/TSE.2019.2940179

4. Cuadrado, 1.8., Guerra, E., de Lara, J.: Quick fixing atl transforma-
tions with speculative analysis. Softw. Syst. Model. 17, 779-813
(2018)

5. Demuth, A., Kretschmer, R., Egyed, A., Maes, D.: Introducing
traccability and consistency checking for change impact analy-
sis across engineering tools in an automation solution company:
an experience report. In: 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 529-538. IEEE
(2016)

@ Springer

R. Kretschmeretal.

20.

21.

22

23.

24,

. Egyed, A.: Instant consistency checking for the UML. In: 28th

International Conference on Software Engincering (ICSE 2006),
Shanghai, China, May 20-28, 2006, pp. 381-390 (2006). https:/
doi.org/10.1145/1134339

. Eramo, R., Picrantonio, A., Rosa, G.: Uncertainty in bidirectional

transformations. In: Proceedings of the 6th International Workshop
on Modcling in Software Engincering, pp. 37-42. ACM (2014)

. Eramo, R., Rosa, G., Picrantonio, A.: Managing uncertainty in bidi-

rectional model transformations. In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engi-
neering, pp. 49-58. ACM (2015)

. Frakes, W.B., Kang, K.: Software reuse research: status and future.

IEEE Trans. Softw. Eng. 31(7), 529-536 (2005)

. Ghanbari, A., Benton, S., Zhang, L.: Practical program repair via

bytecode mutation. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Sofiware Testing and Analysis, pp.
19-30 (2019)

. Hebig, R., Quang, T.H., Chaudron, M.R., Robles, G., Fernandez,

M.A.: The Quest for Open Source Projects That Use UML: Mining
GitHub, pp. 173-183. ACM, New York (2016)

. Hebig, R., Khelladi, D.E., Bendraou, R.: Approaches to co-

evolution of metamodels and models: a survey. IEEE Trans. Softw.
Eng. 43(5), 396-414 (2017)

. Hegediis, A., Horvith, A, Rith, I, Branco, M.C., Varré, D.: Quick

fix generation for dsmls. In: VL/HCC, pp. 17-24 (2011). https://
doi.org/10.1109/VLHCC.2011.6070373

. Hegediis, A., Horvith, A.. Varré, D.: A model-driven framework

for guided design space exploration. Autom. Softw. Eng. 22(3),
399-436 (2015). https://doi.org/10.1007/s10515-014-0163-1

. Jackson, D.: Alloy: a lightweight object modelling notation. ACM

Trans. Softw. Eng. Methodol. 11(2), 256-290 (2002). hups://doi.
org/10.1145/505145.505149

. Jongeling, R.: How to live with inconsistencies in industrial

model-based development practice. In: 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), pp. 642-647.1EEE (2019)

. Jongeling, R., Ciccozzi, F, Cicchetti, A., Carlson, J.: Lightweight

consistency checking for agile model-based development in prac-
tice. In: 15th European Conference on Modelling Foundations and
Applications (ECMFA) (2019)

. Kessentini, W., Sahraoui, H., Wimmer, M.: Automated meta-

model/model co-evolution using a multi-objective optimization
approach. In: European Conference on Modelling Foundations and
Applications, pp. 138-155. Springer (2016)

. Khelladi, D.E., Bendraou, R., Baarir, S., Laurent, Y., Gervais, M.P.::

A framework to formally verify conformance of a software process
to a software method. In: Proceedings of the 30th Annual ACM
Symposium on Applicd Computing, pp. 1518-1525. ACM (2015)
Khelladi, D.E., Kretschmer, R., Egyed, A.: Detecting and exploring
side effects when repairing model inconsistencies. In: Proceedings
of the 12th ACM SIGPLAN International Conference on Software
Language Engineering, pp. 113-126 (2019)

Kaénig, H., Diskin, Z.: Efficient consistency checking of interrelated
models. In: European Conference on Modelling Foundations and
Applications, pp. 161-178. Springer (2017)

Koyuncu, A., Liu, K., Bissyandé, TF., Kim, D., Klein, J., Mon-
perrus, M., Le Traon, Y.: Fixminer: mining relevant fix patterns
for automated program repair. Empir. Softw. Eng. 25, 1980-2024
(2020)

Kretschmer, R., Khelladi, D.E., Demuth, A., Lopez-Herrejon, R.E.,
Egyed, A.: From abstract to concrete repairs of model inconsis-
tencies: an automated approach. APSEC 2017, 456-465 (2017).
https://doi.org/10.1109/APSEC.2017.52

Le, X.B.D., Lo, D., Le Goues, C.: History driven program repair. In:
2016 IEEE 23rd Intemational Conference on Software Analysis,

@ Springer

32.

3.

38.

41.

42,

43.

Evolution, and Reengineering (SANER), vol. 1, pp. 213-224. IEEE
(2016)

. Liu, X, Zhong, H.: Mining stackoverflow for program repair. In:

2018 IEEE 25th Intemational Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 118-129. IEEE (2018)

. Long, F., Amidon, P., Rinard, M.: Automatic inference of code

transforms for patch generation. In: Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engincering, pp 727-
739 (2017)

. Macedo, N., Cunha, A.: Least-change bidirectional model transfor-

mation with QVT-R and ATL. Softw. Syst. Model. 15(3), 783-810
(2016)

. Macedo, N., Guimaraes, T., Cunha, A.: Model repair and trans-

formation with echo. In: 2013 IEEE/ACM 28th International
Conference on Automated Software Engincering (ASE), pp. 694—
697. IEEE (2013)

. Mantz, E, Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-

models and their instance models: a formal approach based on
graph transformation. Sci. Comput. Program. 104, 2-43 (2015)

. Martinez, M., Monperrus, M.: Astor: Exploring the design space

of generate-and-validate program repair beyond genprog. J. Syst
Softw. 151, 65-80 (2019)

. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: Scalable multiline

program patch synthesis via symbolic analysis. In: Proceedings of
the 38th International Conference on Software Engincering, pp.
691-701 (2016)

Mens, T., Van Der Stracten, R., D’"Hondt, M.: Detecting and
resolving model inconsistencies using transformation dependency
analysis. In: International Conference on Model Driven Engineer-
ing Languages and Systems, pp. 200 214. Springer (2006)
Misbhauddin, M., Alshayeb, M.: UML model refactoring: a sys-
tematic literature review. Empir. Softw. Eng. 20(1), 206-251 (2015)

. Mougenot, A., Darasse, A., Blanc, X., Soria, M.: Uniform random

generation of huge metamodel instances. In: European Conference
on Model Driven Architecture-Foundations and Applications, pp.
130-145. Springer (2009)

. Muslu, K., Brun, Y., Holmes, R., Emst, M.D., Notkin, D.: Specu-

lative analysis of integrated development environment recommen-
dations. ACM SIGPLAN Not. 47(10), 669-682 (2012)

. Ohmdorf, M., Pictsch, C., Kelter, U., Kehrer, T.: Revision: a tool for

history-based model repair recommendations. In: Proceedings of
the 40th International Conference on Software Engincering: Com-
panion Proceeedings, pp. 105-108 (2018)

. OMG (2014) Object constraint language. http://www.omg.org/

spec/OCL/24

Paige, R.E, Matragkas, N., Rose, L.M.: Evolving models in model-
driven enginecring: state-of-the-art and future challenges. J. Syst
Softw. 111, 272-280 (2016)

. Puissant, J.P, Van Der Stracten, R., Mens, T.: Resolving model

inconsistencies using automated regression planning. Softw. Syst.
Model. 14(1), 461-481 (2015)

. Reder, A., Egyed, A.: Computing repair trees for resolving incon-

sistencies in design models. In: ASE, pp 220-229 (2012). hutps://
doi.org/10.1145/2351676.2351707

Reder, A., Egyed, A.: Incremental consistency checking for com-
plex design rules and larger model changes. In: MODELS, pp.
202-218 (2012). https://doi.org/10.1007/978-3-642-33666-9_14
Reder, A., Egyed, A.: Determining the cause of a design model
inconsistency. IEEE Trans. Softw. Eng. 39(11), 15311548 (2013).
https://doi.org/10.1109/TSE.2013.30

Saha, R.K., Lyu, Y., Yoshida, H., Prasad, M.R.: Elixir: effective
object-oriented program repair. In: 2017 32nd IEEE/ACM Inter-
national Conference on Automated Software Engincering (ASE),
pp. 648-659. IEEE (2017)

Consistent change propagation within models

44.

45.

47.

48.

49.

50.

51

52.

53.

Semerith, O., Debreceni, C., Horvith, A.., Varré, D.: Change prop-
agation of view models by logic synthesis using sat solvers. In:
Bx@ ETAPS, pp. 4044 (2016)

Semerith, O., Horvith, A., Debreceni, C.: Incremental backward
change propagation of view models by logic solvers. In: Proceed-
ings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, pp. 306-316. ACM
(2016)

. Snook, C., Butler, M.: UML-B: Formal modeling and design aided

by UML. ACM Trans. Softw. Eng. Mcthodol. (TOSEM) 15(1),
92-122 (2006)

Steimann, F., von Pilgrim, J.: Constraint-based refactoring with
foresight. In: European Conference on Object-Oriented Program-
ming, pp. 535-559. Springer (2012)

Steimann, F., Hagemann, J., Ulke, B.: Computing repair alterna-
tives for malformed programs using constraint attribute grammars.
In: Proceedings of the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 711-730 (2016)

Taentzer, G., Ohrndorf, M., Lamo, Y., Rutle, A.: Change-
preserving model repair. In: International Conference on Fun-
damental Approaches to Software Engineering, pp. 283-299.
Springer (2017)

Trols, M.A., Mashkoor, A., Egyed, A.: Multifaceted consis-
tency checking of collaborative engineering artifacts. In: 2019
ACM/IEEE 22nd International Conference on Model Driven Engi-
neering Languages and Systems Companion (MODELS-C), pp.
278-287. IEEE (2019)

Whittle, J., Hutchinson, J., Rounceficld, M.: The state of practice
in model-driven engineering. [EEE Softw. 31(3), 79 85 (2014)
Wohlin, C., Runeson, P., Hast, M., Ohlsson, M.C., Regnell, B.,
Wesslén, A.: Experimentation in Software Engincering. Springer,
Berlin (2012)

Xin, Q., Reiss, S.P.: Leveraging syntax-related code for automated
program repair. In: 2017 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 660-670.
IEEE (2017)

. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Sup-

porting automatic model inconsistency fixing. In: ESEC FSE, pp.
315-324 (2009) hutps://doi.org/ 10.1145/1595696.1595757

Publisher's Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Roland Kretschmer is a Ph.D.
student at the Institute for Soft-
ware Systems Engincering (ISSE)
at the Johannes Kepler Univer-
sity in Linz, Austria, supervised
bz Prof. Dr. Alexander Egyed. He
reccived his master from the
Johannes Kepler University in
Linz, Austria. His research intrests
include Softwarc Engincering,
Model Driven Engineering, the Uni-
fied Modeling Language (UML)
and Model checking based on the
Object Constraint Language (OCL).

ware Processes, Agile methods.

Djamel Eddine Khelladiis a CNRS
rescarcher in the IRISA reascarch
lab in the DIVERSE tecam, Uni-
versité Rennes 1. Before that he
was a Postdoctoral rescarcher in
the Institute for Software Systems
Engincering (ISSE) at the Johannes
Kepler University Linz. He holds
a PhD. in the Laboratwire
d'Infromatique de Paris 6 (LIP6)
al the university of Piere et Marie
Curie (UPMC). His research inter-
ests include Software Engincer-
ing, Model-Driven Engincering,
DSL Evolution, Co-Evolution, Soft-

Roberto Erick Lopez-Hermejon is
currently Associate Professor at
the department of Software Engi-
neering at IT of the Ecole de
technologic supéricure in Mon-
treal, Canada. Prior to that, he
was a postdoctoral rescarcher at
the Johannes Kepler University in
Linz Austria. He was a Lisc Meit-
ner Fellow (2012-2014) sponsored
by the Austrian Science Fund
(FWF), an Intra-European Maric
Curic Fellow (2012-2014) spon-
sored by the European Union, and
a Carcer Development Fellow

(2005-2008) at the Software Engincering Centre of the University of
Oxford, England. He obtained his Ph.D. from The University of Texas
at Austin in 2006, funded in part by a Fulbright Fellowship. His exper-
tise is software product lines, variability management, feature oriented
software development, and scarch-based software engincering.

Prof. Dr. Alexander Egyed hcads
the Institute for Software Systems
Engincering (ISSE) at the Johannes
Kepler University, Austria. He
received his Doctorate from the
University of Southern California,
USA and previously worked at
Teknowledge Corporation, USA
and the University College Lon-
don, UK. Dr. Egyed was recog-
nized among the Top 10 schol-
ars in software engincering and
his work has received numerous
awards and recognitions.

@ Springer

